検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 1 件中 1件目~1件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Polar rotor scattering as atomic-level origin of low mobility and thermal conductivity of perovskite CH$$_{3}$$NH$$_{3}$$PbI$$_{3}$$

Li, B.; 川北 至信; Liu, Y.*; Wang, M.*; 松浦 直人*; 柴田 薫; 河村 聖子; 山田 武*; Lin, S.*; 中島 健次; et al.

Nature Communications (Internet), 8, p.16086_1 - 16086_9, 2017/06

 被引用回数:81 パーセンタイル:91.64(Multidisciplinary Sciences)

Perovskite CH$$_{3}$$NH$$_{3}$$PbI$$_{3}$$ exhibits outstanding photovoltaic performances, but the understanding of the atomic motions remains inadequate even though they take a fundamental role in transport properties. Here, we present a complete atomic dynamic picture consisting of molecular jumping rotational modes and phonons, which is established by carrying out high-resolution time-of-flight quasi-elastic and inelastic neutron scattering measurements in a wide energy window ranging from 0.0036 to 54 meV on a large single crystal sample, respectively. The ultrafast orientational disorder of molecular dipoles, activated at approximately 165 K, acts as an additional scattering source for optical phonons as well as for charge carriers. It is revealed that acoustic phonons dominate the thermal transport, rather than optical phonons due to sub-picosecond lifetimes. These microscopic insights provide a solid standing point, on which perovskite solar cells can be understood more accurately and their performances are perhaps further optimized.

1 件中 1件目~1件目を表示
  • 1